ESM 2204	FINAL EXAMINATION	MECHANICS OF DEFORMABLE BODIES
NAME (print)	SAMPLE EXA	M
last	first	initial
PLEDGE (signature):	On my honor I have neither g	iven nor received unauthorized aid on this test.
INSTRUCTIONS:		
Closed book, closed note	s.	
There are 12 questions on	this exam - check for completene	ss. Part I (40%) consists of 10 multiple-choice
problems (each problem is	s worth equal credit). Part II (60%	c) consists of two work-out problems (each

CHECK FOR COMPLETENESS

problem is worth equal credit). For Parts I and II do your work directly on the pages provided.

1. Determine the normal stress at the midpoint of rod BC which has a diameter of 40 mm.

39.8 MPa

- a. 99.5 MPa
- b. 39.8 MPa
- c. 30.0 MPa
- d. 29.8 MPa
- e. 23.9 MPa
- f. 19.89 MPa

- 2. The shear diagram for a 16 ft long beam simply supported at each end is shown below. All lines in the shear diagram are straight. The moment at each end is zero. There are no concentrated couples (moments) along the beam. The magnitude of the maximum bending moment in the beam is
 - a. 8,000 lb. ft
 - b. 16,000 lb. ft
 - c. 18,000 lb ft
 - d. 26,000 lb. ft
 - e. 34,000 lb. ft
 - f. 38,000 lb. ft

- 3. The circular rod of 25 mm diameter undergoes a temperature change of 20° C. If E = 200 GPa, v = 0.3, and $\alpha = 12 \times 10^{-6}$ /° C, determine the change in diameter of the rod.
 - a. zero
 - b. 0.000240 mm
 - c. 0.001800 mm
 - d. 0.00600 mm
 - e. 0.0720 mm
 - f. none of the above
- 6(10-3) mm

- 4. A 9 kN tensile load will be applied to a 50 m length of steel wire ($E = 200 \, GPa$). Determine the smallest diameter wire which may be used, knowing that the normal stress may not exceed 150 MPa and that the increase in the length of the wire should be at most 25 mm.
 - a. 1.514 mm
 - b. 4.37 mm

10.70 mm

-0.01440 mm

- c. 5.35 mm
- d. 8.74 mm
- e. 10.70 mm
- f. 21.4 mm
- 5. A steel (E = 200 GPa, v = 0.30) block is subjected to a uniform pressure of 120 MPa on all its faces. Determine the change in length of side BD
 - a. -0.0360 mm
 - b. +0.01440 mm
 - c. +0.00240 mm
 - d. +0.000600 mm
 - e. -0.01440 mm
 - f. -0.00240 mm

- 6. Shaft ABCD is solid with a constant diameter d = 120 mm. For the loading shown determine the maximum shearing stress in segment BC.
 - a. 7.37 MPa
 - b. 17.68 MPa
 - c. 41.3 MPa
 - d. 58.9 MPa
 - e. 76.6 MPa
 - f. 117.9 MPa

7. For the state of stress shown, determine the magnitude and direction of the shearing stress on a plane parallel to a -a.

3.75 Ksi 4

81.2 N

3360 psi

- a. 1.250 ksi -
- b. 1.250 ksi --
- c. 4.60 ksi -
- d. 3.75 ksi ---
- e. 7.41 ksi
- f. 3.75 ksi

- 8. Determine the critical buckling load of a wooden (E = 12 GPa) stick one meter long which has a 7×24 mm rectangular cross section. The ends are pinned.
 - a. 0.483 N
 - b. 5.68 N
 - c. 20.3 N
 - d. 25.8 N
 - e. 81.2 N
 - f. 955 N
- 9. A spherical pressure vessel made of steel is 15 ft in diameter (outside) and has a uniform wall thickness of 0.40 in. For an internal pressure of 60 psi, determine the maximum shearing stress in the vessel.
 - a. 13,440 psi
 - b. 10,080 psi
 - c. 6720 psi
 - d. 3360 psi
 - e. zero
 - f. none of the above
- 10. A beam has a T-shaped cross section shown. For the cross section the horizontal neutral axis is located 1.833 in. above the bottom of the section, and the moment of inertia about this axis is 1.417 in.4 For section n-n, determine the maximum shearing stress.
 - a. 11,640 psi
 - b. 6000 psi
 - c. 1778 psi
 - d. 750 psi
 - e. 500 psi

 - f. 222 psi
- 1778 psi

PART II

11. The 1.5 in. diameter solid shaft is subjected to an axial load P = 40,000 lb and a torque T = 4000 lb-in. Consider a point on top of the shaft and determine the principal stresses and maximum shearing stress. The directions of these stresses are not required. SHOW ALL WORK

24.1 ksi -1.509 ksi 12.83 ksi

12. The cantilever beam BC is attached to a cable AB as shown. Both the beam and cable are made of steel ($E = 200 \; GPa$). The beam has a $200 \; x \; 200 \; mm$ cross section. Knowing that the cable is initially taut, determine the tension in the cable caused by the distributed load shown. SHOW ALL WORK

44.0 kN

(a) Flat bars with holes

Stress concentration factors for flat bars under axial loading[†]

Note that the average stress must be computed across the narrowest section: $\sigma_{ave} = P/td$, where t is the thickness of the bar.

(b) Flat bars with fillets

Effective length of column for various end conditions.

Appendix. D. Beam Deflections and Slopes

Beam and Loading	Elastic Curve	Maximum Deflection	Slope at End	Equation of Elastic Curve
P P	y	$-\frac{PL^3}{3EI}$	$-\frac{PL^2}{2EI}$	$y = \frac{P}{6EI}(x^3 - 3Lx^2)$
2 w	y	$-\frac{wL^4}{8EI}$	$-\frac{wL^3}{6EI}$	$y = -\frac{w}{24EI}(x^4 - 4Lx^3 + 6L^2x^2)$
	y	$-\frac{ML^2}{2EI}$	$-\frac{ML}{EI}$	$y = -\frac{M}{2EI}x^2$
$ \begin{array}{c c} & & \\ & \downarrow -\frac{1}{2}L & & \\ & & \downarrow & \\ & \downarrow & \\ $	y L x $+\frac{1}{2}L \rightarrow y_{\text{max}}$	$-\frac{PL^3}{48EI}$	$\pm \frac{PL^2}{16EI}$	For $x \le \frac{1}{2}L$: $y = \frac{P}{48EI}(4x^3 - 3L^2x)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$A = \begin{bmatrix} y \\ & a \end{bmatrix} \begin{bmatrix} b \\ & b \end{bmatrix} \begin{bmatrix} b \\ & x \end{bmatrix}$	For $a > b$: $-\frac{Pb(L^2 - b^2)^{3/2}}{9\sqrt{3}EIL}$ at $x_m = \sqrt{\frac{L^2 - b^2}{3}}$	$\theta_{A} = -\frac{Pb(L^{2} - b^{2})}{6EIL}$ $\theta_{B} = +\frac{Pa(L^{2} - a^{2})}{6EIL}$	For $x < a$: $y = \frac{Pb}{6EIL} \left[x^3 - (L^2 - b^2)x \right]$ For $x = a$: $y = -\frac{Pa^2b^2}{3EIL}$
6 w	y L x y	$-\frac{5wL^4}{384EI}$	$\pm \frac{wL^3}{24EI}$	$y = -\frac{w}{24EI}(x^4 - 2Lx^3 + L^3x)$
A B B	y L B x y	$\frac{ML^2}{9\sqrt{3}EI}$	$\theta_A = +\frac{ML}{6EI}$ $\theta_B = -\frac{ML}{3EI}$	$y = -\frac{M}{6EIL} \left(x^3 - L^2 x \right)$